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Outline 
• Next-generation sequencing 

• Sequencing strategies 

• TCGA repository 

• Differential expression analysis 

• Negative binomial model 

• Example: lncRNAs in prostate cancer in relation to Gleason score 



DNA sequencing timeline 



Sanger method 



Sanger sequencing reached its technical limits 

• Only modestly parallel (394 lanes/machine) 

• Long read lengths (500-900 bp) &  >99.9% correct 

• Need to clone the DNA to obtain enough for sequencing reaction 

 

• cost for typical Sanger sequencing is $5-6/sample with reliable 500 bp 
of sequence 







Important sequencing parameters 



A) Fragment DNA 

B) Repair ends/Add A overhang DNA 

C) Ligate adapters 

D) Select ligated DNA 

E) Attach DNA to flow cell 

F) Bridge amplification 

G) Generate clusters 

H) Anneal sequencing primer 

I)  Extend 1st base, read & deblock 

J)  Repeat to extend strand 

K)  Generate base calls 

Library Prep: 
~ 6 hours 

Cluster generation 
~ 6 hours 

Sequencing 
2-6 days 

Illumina NGS 



Ion Torrent – measures pH changes 

Done on a semi-
conductor chip 



Ion Torrent workflow 



RNA-Seq: a powerful approach 



Transcript isoforms 





Repositories 









What we have…. 

The Cancer Genome Atlas (TCGA) https://portal.gdc.cancer.gov/ 



 

An update (12th August 2018): 

You should abandon RPKM / FPKM normalisation. They 

are not ideal where cross-sample differential expression 

analysis is your aim; indeed, they render samples 

incomparable via differential expression analysis: Please 

read this: A comprehensive evaluation of normalization 

methods for Illumina high-throughput RNA sequencing 

data analysis 

In their key points: 
The Total Count and RPKM normalization methods, both of 
which are still widely in use, are ineffective and should be 
definitively abandoned in the context of differential analysis. 

https://www.ncbi.nlm.nih.gov/pubmed/22988256
https://www.ncbi.nlm.nih.gov/pubmed/22988256
https://www.ncbi.nlm.nih.gov/pubmed/22988256
https://www.ncbi.nlm.nih.gov/pubmed/22988256
https://www.ncbi.nlm.nih.gov/pubmed/22988256






For each position i in the read, a set S(i) is defined as the set of all features overlapping position i.  

Then, consider the set S, which is (with i running through all position within the read) 

• the union of all the sets S(i) for mode union. 

• the intersection of all the sets S(i) for mode intersection-strict. 

• the intersection of all non-empty sets S(i) for mode intersection-nonempty. 



Sequencing count data Sequencing counting rules 



A FIRST INTUITION 

1. In a standard sequencing experiment (RNA-Seq), we 

map the sequencing reads to the reference genome 

and count how many reads fall within a given gene (or 

exon).  

2. This means that the input for the statistical analysis are 

discrete non-negative integers (“counts”) for each gene 

in each sample.  

3. The total number of reads for each sample tends to be 

in the millions, while the counts per gene vary 

considerably but tend to be in the tens, hundreds or 

thousands. Therefore, the chance of a given read to be 

mapped to any specific gene is rather small.  

4. Discrete events that are sampled out of a large pool 

with low probability sounds very much like a Poisson 

process. And indeed it is. In fact, earlier iterations of 

RNA-Seq analysis modeled sequencing data as a 

Poisson distribution. There is one problem, however. 

The variability of read counts in sequencing 

experiments tends to be larger than the Poisson 

distribution allows. 



It is obvious that the variance of counts is generally 

greater than their mean, especially for genes expressed at 

a higher level. This phenomenon is called 

“overdispersion“. The NB distribution is similar to a 

Poisson distribution but has an extra parameter called the 

“clumping” or “dispersion” parameter. It is like a Poisson 
distribution with more variance. 

If we assume that our samples are biological replicates, it 

is not surprising that the same transcript is present at 

slightly different levels in each sample, even under the 

same conditions. In other words, the Poisson process in 

each sample has a slightly different expected count 

parameter. This is the source of the “extra” variance 

(overdispersion) we observe in sequencing data. In the 

framework of the NB distribution, it is accounted for by 

allowing Gamma-distributed uncertainty about the 

expected counts (the Poisson rate) for each gene. 



Example: lncRNAs in prostate cancer in relation to Gleason score 



Prostate cancer 



Prostate cancer diagnostics: present and future 







Outline 
• Example: lncRNAs in prostate cancer in relation to Gleason score 

• Input Data preparation 

• MA Plots 

• Dimensionality Reduction 
• PCA 

• t-SNE 

• Statistical distributions 
• Poisson 

• Negative binomial 

• Statistical significance 
• 𝑝-values  

• Significant genes 

 



Prostate cancer – read counts 
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Prostate cancer – clinical data 



Dimensionality Reduction 
• Prostate cancer count table 

• 500 features 

• 499 samples 

• Lot of features to handle in transcriptomic data 

• Example: Pasilla dataset 
• 14,599 features 

• 7 samples 

• For visualization and analysis purposes it is good to reduce the 
dimensionality. Possible techniques: 

• PCA  

• t-SNE 



PCA 
• Principal component analysis (PCA) is a statistical procedure that 

uses an orthogonal transformation to convert a set of observations of 
possibly correlated variables (entities each of which takes on various 
numerical values) into a set of values of linearly uncorrelated 
variables called principal components.  

• This transformation is defined in such a way that the first principal 
component has the largest possible variance (that is, accounts for as 
much of the variability in the data as possible), and each succeeding 
component in turn has the highest variance possible under the 
constraint that it is orthogonal to the preceding components.  

• The resulting vectors (each being a linear combination of the 
variables and containing 𝑛  observations) are an uncorrelated 
orthogonal basis set. PCA is sensitive to the relative scaling of the 
original variables. 



PCA – MATLAB  
coeff = pca(X)  

• returns the principal component coefficients, also known as loadings, 
for the 𝑛-by-𝑝 data matrix X.  

• Rows of X correspond to observations and columns correspond to 
variables. There are 𝑛 observations and 𝑝 variables. 

• The coefficient matrix is 𝑝-by-𝑝. Each column of coeff contains 
coefficients for one principal component, and the columns are in 
descending order of component variance. By default, pca centers the 
data and uses the singular value decomposition (SVD) algorithm. 



PCA – Scree plot 



PCA – bi-plot PC1 and PC2 



PCA – bi-plot PC1 and PC3 



PCA – bi-plot PC2 and PC3 



PCA – tri-plot PC1, PC2 and PC3 



t-SNE 
• It is a nonlinear dimensionality reduction technique well-suited for 

embedding high-dimensional data for visualization in a low-
dimensional space of 2 or 3 dimensions.  

• Specifically, it models each high-dimensional object by a 2D or 3D 
point in such a way that similar objects are modeled by nearby points 
and dissimilar objects are modeled by distant points with high 
probability. 



t-SNE 
• The t-SNE algorithm comprises two main stages: 

1. t-SNE constructs a probability distribution over pairs of high-dimensional 
objects in such a way that similar objects have a high probability of being 
picked while dissimilar points have an extremely small probability of being 
picked.  

2. t-SNE defines a similar probability distribution over the points in the low-
dimensional map, and it minimizes the Kullback–Leibler divergence 
between the two distributions with respect to the locations of the points in 
the map.  

• Hyper-parameter: perplexity 
• It is basically the effective number of neighbors for any point, and t-SNE works 

relatively well for any value between 5 and 50. Larger perplexities will take 
more global structure into account, whereas smaller perplexities will make 
the embeddings more locally focused. 



t-SNE bi-plot 



t-SNE tri-plot 



t-SNE – MATLAB  
Y = tsne(X)  

returns a matrix of two-dimensional 
embeddings of the high-dimensional rows 
of X. 

X - Data points 

specified as an n-by-m matrix, where each 
row is one m-dimensional point. 

Y — Embedded points 

returned as an n-by-NumDimensions 
matrix. Each row represents one 
embedded point.  



Fold Change 
• Fold change is a measure describing how much a quantity changes 

between an original and a subsequent measurement.  

• It is defined as the ratio between the two quantities; for quantities A and B, 
then the fold change of B with respect to A is B/A.  

• In our case, we define Fold Change as: 

 foldChange = meanHigh ./ meanLow; 

• You can look at the difference of the gene expression among two 
conditions, by calculating the fold change (FC) for each gene, i.e. the ratio 
between the counts in the high gleason group over the counts in the low 
gleason group.  

• Generally these ratios are considered in the log2 scale, so that any change 
is symmetric with respect to zero.  

• A ratio of 1/2 or 2/1 corresponds to -1 or +1 in the log scale. 

 



MA plot 



Hypothesis Testing 
• Based on a count table, we want to detect differentially expressed 

genes between different conditions. 
• How can we detect genes for which the counts of reads change between 

conditions more systematically than as expected by chance? 

• We would like to use statistical testing to decide whether, for a given 
gene, an observed difference in read counts is significant, that is, 
whether it is greater than what would be expected just due to natural 
random variation. 

• Null hypothesis 𝐻0: 
• the gene 𝑔 is not differentially expressed between the conditions 

• Alternative hypothesis 𝐻1: 
• the gene 𝑔 is differentially expressed between the conditions 

 



Hypothesis Testing 
• How to quantify the difference? 

• The statistical tests do not give a simple answer of whether the 
hypothesis is true or not. What a statistical test determines is how 
likely that null hypothesis is to be true. 

• After a test statistic is computed, it is often converted to a 𝑝-value. 
Then the difference is quantified in terms of the 𝑝-value.  

• If the 𝑝-value is small then the null hypothesis is deemed to be untrue 
and it is rejected in favour of the alternative.  

• The 𝑝-value is the probability of seeing a result as extreme or more 
extreme than the observed data, when the null hypothesis is true. 

• It is a usual convention in biology to use a critical 𝑝-value of 0.05. 



Type of errors in tests 



Poisson distribution 
• The Poisson distribution is a discrete probability distribution that 

expresses the probability of a given number of events occurring in a 
fixed interval of time or space if these events occur with a known 
constant rate and independently of the time since the last event. 



Poisson distribution 



Poisson distribution 
• We denote Poisson distribution with 

𝑃𝑜𝑖𝑠(𝜆) 

• 𝜆 ∈ ℝ+ is the rate 

• Probability mass function (pmf) 

𝑓 𝑘; 𝜆 = Pr 𝑋 = 𝑘 =
𝜆𝑘𝑒−𝜆

𝑘!
 

• Mean 

𝜇 = 𝜆 

• Variance 

𝜎2 = λ 

 



Negative binomial distribution 
• The negative binomial distribution is a discrete probability 

distribution of the number of successes in a sequence of independent 
and identically distributed Bernoulli trials before a specified (non-
random) number of failures (denoted 𝑟) occurs.  

• For example, if we define a 1 as failure, all non-1s as successes, and 
we throw a dice repeatedly until 1 appears the 3rd time  
(𝑟 = 3 failures), then the probability distribution of the number of 
non-1s that appeared will be a negative binomial distribution. 



Negative binomial distribution 
• We denote negative binomial distribution with: 

𝑁𝐵(𝑟, 𝑝) 

• 𝑟 > 0 is the number of failures until the experiment is stopped 

• 𝑝 ∈ (0,1) is the probability of success for each experiment 

• 𝑘 is the number of successes 

• Probability mass function (pmf) 

𝑓 𝑘; 𝑟, 𝑝 = Pr 𝑋 = 𝑘 =
𝑘 + 𝑟 − 1

𝑘
1 − 𝑝 𝑟𝑝𝑘 

• Mean 

𝜇 =
𝑝𝑟

1 − 𝑝
 

• Variance 

𝜎2 =
𝑝𝑟

1 − 𝑝 2
= 𝜇 +

𝜇2

𝑟
 



Negative binomial distribution 



Modeling count data 



Modeling count data 



Modeling count data 
𝐾𝑔: sequence reads assigned to a particular region 𝑔 

𝑝𝑔: proportion of DNA fragments arising from the region 𝑔 

𝐾𝑔 = 0,1,2, … , 𝑛 (𝑛 + 1 possible discrete values) 

𝑛: total number of sequenced reads 

We want to estimate Pr (𝐾𝑔 = 𝑘) 

If there are 𝑘 aligned reads to region 𝑔, then must be 𝑛 − 𝑘 not aligned to region 𝑔.  

The probability of this is given by: 𝑝𝑘 1 − 𝑝 𝑛−𝑘 

The number of ways of arranging 𝑘 successes in 𝑛 trials is: 

𝑛

𝑘
=

𝑛!

𝑘! 𝑛 − 𝑘 !
 

Then, the probability of 𝑘 successes in 𝑛 independent trials is: 

𝑃 𝐾𝑔 = 𝑘 =
𝑛

𝑘
𝑝𝑘 1 − 𝑝 𝑛−𝑘 

This is the Binomial distribution, which we denote 𝐾𝑔 ~ 𝐵𝑖𝑛(𝑛, 𝑝) 



Modeling count data 

𝑛 → ∞  

𝑝 → 0 

𝜆 → 𝑛𝑝 

𝐵𝑖𝑛 𝑛, 𝑝 → 𝑃𝑜𝑖𝑠(𝜆) 



Modeling count data 



Modeling count data 



Biological noise: overdispersion 



Bioinformatics Toolbox – nbintest() 
• test = nbintest(X,Y) performs a hypothesis test that two 

independent samples of short-read count data, in each row of X and Y, 
come from distributions with equal means under the assumptions that: 

• Short-read counts are modeled using the negative binomial distribution. 

• Variance and mean of data in each row are linked through a regression function 
along all the rows. 

• test is a NegativeBinomialTest object with two-sided 𝑝-values 
stored in the pValue property. 

• Use this function when you want to perform an unpaired hypothesis test 
for short-read count data (from high-throughput assays such as RNA-Seq or 
ChIP-Seq) with small sample sizes (in the order of tens at most). For 
instance, use this function to decide if observed differences in read counts 
between two conditions are significant for given genes. 



Bioinformatics Toolbox – nbintest() 
'VarianceLink' 

Linkage type between the variance and mean 

'LocalRegression' The variance is the sum of the shot noise term (mean) and a locally 

regressed nonparametric smooth function of the mean as described in. This option is the default. 

Use this option if your data is overdispersed and has more than 1000 rows (genes). 

'Constant' The variance is the sum of the shot noise term (mean) and a constant multiplied 

by the squared mean. This method uses all the rows in the data to estimate the constant. Use this 

option if your data is overdispersed and has less than 1000 rows. 

'Identity' The variance is equal to the mean as described in. Counts are therefore modeled 

by the Poisson distribution individually for each row of X and Y. Use this option if your data has 

few genes and the regression between the variance and mean is not possible because of very 

small number of samples or replicates. This option is not recommended for overdispersed data. 



Variance Link – pasilla  



Variance Link – prostate cancer 



𝑝-values 
• The output of nbintest includes a vector of 𝑝-values. A 𝑝-value 

indicates the probability that a change in expression as strong as the 
one observed (or even stronger) would occur under the null 
hypothesis, i.e. the conditions have no effect on gene expression.  

• In the histogram of the 𝑝-values we observe an enrichment of low 
values (due to differentially expressed genes), whereas other values 
are uniformly spread (due to non-differentially expressed genes).  

• The enrichment of values equal to 1 are due to genes with very low 
counts. 



𝑝-values histogram 



Adjusted 𝑝-values 
• Use mafdr function for obtaining adjusted 𝑝-values 

 FDR = mafdr(PValues)  

returns FDR that contains a positive false discovery rate (pFDR) for each entry in 
PValues using the procedure introduced by Storey (2002).  

PValues contains one 𝑝-value for each feature (for example, a gene) in a data set. 

• Optional parameter 'BHFDR' — Flag to use linear step-up procedure 

Flag to use the linear step-up procedure introduced by Benjamini and Hochberg 
(1995), specified as the comma-separated pair consisting of 'BHFDR' and true 
or false.  

The default value is false, that is, the function uses the procedure introduced by 
Storey (2002). 



Benjamini-Hochberg adjustment 
• The Benjamini-Hochberg (BH) adjustment is a statistical method that provides an 

adjusted 𝑝-value answering the following question: what would be the fraction of false 
positives if all the genes with adjusted 𝑝-values below a given threshold were considered 
significant?  

• Set a threshold of 0.1 for the adjusted 𝑝-values, equivalent to consider a 10% false 
positives as acceptable, and identify the genes that are significantly expressed by 
considering all the genes with adjusted 𝑝-values below this threshold. 

• We define a significant gene if adjusted 𝑝-value is less than 0.1 
% compute the adjusted P-values (BH correction) 

padj = mafdr(tLocal.pValue,'BHFDR',true); 

% add to the existing table 

geneTable.pvalue = tLocal.pValue; 

geneTable.padj = padj; 

% create a table with significant genes 

sig = geneTable.padj< 0.1; 

 



Significant Genes 



Significant Genes 
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